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Abstract

Using the relation between the unperturbed dimensions parameter on one hand and the intrinsic viscosity and the statistical segment length

of the polymers on the other, as predicted by the two-parameters theory, we have modi®ed Han's equation [Polymer, 20 (1979) 1083], which

is derived from the blob theory. According to the proposed equation, plotting �h�=M1=2 versus M3n21:5
; where n is the exclude volume index,

we obtain straight lines from the slopes of which we calculate the statistical segment length of ¯exible polymers. The value of n is obtained

from the value of the exponent of the Mark±Houwink±Sakurada equation. The proposed method is useful in the high molecular mass region

in which the Stockmayer±Fixman±Burchard equation is not valid. q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The statistical segment length of ¯exible polymers is

obtained from the unperturbed dimensions parameter, Ku;

of these polymers. The value of Ku is obtained from the

intrinsic viscosity, �h�u; determined in a theta solvent �Ku �
�h�u=M1=2�: If a theta solvent is not available the Ku value is

obtained from the values of intrinsic viscosity from

measurements performed in a good solvent. In the following

paragraphs, we use a graphical method relating the intrinsic

viscosity to the molecular mass of this polymer. Among

these graphical methods the most widely used is the Stock-

mayer±Fixman±Burchard (SFB) one [1,2]. Besides Burch-

ard [2], other authors [3±6] have shown that the SFB

method is not applicable in the low molecular mass region

as well as in the high molecular mass region or in the region

of high values of viscometric expansion factor. To deal with

the low-molecular mass problem of the SFB equation, we

have proposed with BenoõÃt [7] a relation between the intrin-

sic viscosity and the molecular mass of polymers from

which we can obtain the Ku value from the values of intrin-

sic viscosity obtained in the region of low molecular masses.

Combining relations derived from the two-parameters

theory and the blob theory we have obtained, with Casassa

[8], an equation which permits obtaining the Ku value of

polymers even in the region of high molecular masses. This

equation contains the parameters K and a of the Mark±

Houwink±Sakurada (MHS) equation, which is valid in the

high molecular mass region.

In this article we will propose an equation which is derived

from the blob model and more precisely from the equation of

Han [9]. The equation of Han is transformed in this work

using also a relation derived from the two-parameters theory.

The resulting new relation, in contrast to the relation obtained

with Casassa [8], contains only the parameter a, of the MHS

equation, but we need now, in order to obtain the unperturbed

dimensions of polymers, to proceed with a graphical repre-

sentation of intrinsic viscosity as a function of the molecular

mass. With the representation proposed here ��h�=M1=2 versus

M3n21:5 where n is the exclude volume index) we obtain

good straight lines, even in the high molecular mass region

of the polymers, from the slopes of which we obtain directly

the statistical segment length of the polymers.

An additional objective of this work is to show that Han's

equation is valid when the polymers are dissolved in

solvents of different quality and for the entire domain of

molecular mass, and not only in the non-free draining

limit.
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2. Theory and procedure

The following equation proposed by Han [9] is derived

from the blob theory [10] and the hydrodynamic considera-

tions of Weill and des Cloizeaux [11]

a3
h � C

N

Nc

� �3n21:5

�1�

This equation relates the viscometric expansion factor of a

macromolecular chain, ah; to the number of blobs of which

the chain consists, N=Nc: N is the number of Kuhn statistical

segments of the chain and Nc the number of Kuhn statistical

segment of which one blob consists. The parameter C is

equal to �4�1 2 n��2 2 n��=��2n 1 1��n 1 1�� where, as we

have already mentioned, n is the excluded volume index.

The value of n is obtained from the exponent a of the MHS

equation because we have 3n 2 1 � a:

Having a3
h � �h�=�h�u � �h�=KuM1=2 and N � M=ms (N,

as we have already mentioned, is the Kuhn statistical

segment number of a fraction of molecular mass M and ms

is the mass of one Kuhn statistical segment), Eq. (1)

becomes

�h�
M1=2

� KuC
M

msNc

� �3n21:5

�2�

Between the Kuhn statistical segment length, A, and the

unperturbed dimensions parameter, Ku; from the two-para-

meters theory, we have the following relation

A � Ku

F

� � 2=3

ML �3�

In this relation F is the Flory parameter and ML the mole-

cular mass per unit length of the polymer. From the above

relation we have Ku � A3=2F=M 3=2
L and having ms � A ML;

Eq. (2) becomes:

�h�
M1=2

� A3�12n�FC

M 3n
L N3n21:5

c

M3n21:5 �4�

According to this equation plotting �h�=M1=2 as a function

of M3n21:5 we must obtain a straight line which goes through

the origin and of which the slope is equal to

A3�12n�FC=M 3n
L N3n21:5

c : We must indicate here that Eq. (4)

is similar to the equation obtained for the wormlike poly-

mers [12]. The only difference between the two equations is

that in the case of wormlike polymers we do not have the

term N3n21:5
c because for these polymers we have Nc � 1

[13,14].

For the application of Eq. (4) we need the value of n , or

the value of the exponent a of the MHS equation �3n 2 1 �
a�: The value of the Kuhn statistical segment length, A, is

obtained from the slope of the obtained straight line, plot-

ting �h�=M1=2 as a function of M3n21:5
; and knowing: (a) the

value of ML of the polymer; (b) the value of C � �4�1 2
n��2 2 n��=��2n 1 1��n 1 1��; (c) the value of F �F � 2:6 £
10 23 cgs�; and (d) the value of Nc. As we have already

mentioned Nc is the number of Kuhn statistical segments

of which one blob consists and corresponds to the molecular

mass at which the excluded volume behavior appears.

According to the thermal blob theory [15], Nc depends on

the quality of the solvent and tends to in®nity when we

approach to the theta solvent. We have proposed an equa-

tion relating the value of Nc, for the ¯exible polymers, with

the value of the exponent of the MHS equation [16].

This relation was obtained calculating the Nc value from

Eq. (1) and also from a direct determination of the

molecular mass at which we observe the appearance

of the excluded volume behavior (molecular mass at
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Fig. 1. Variation of �h�=M1=2 versus M3n21:5 (Eq. (4)) for the systems: (A) POE±benzene; (B) PS±benzene; (C) PMMA±CHCl3.



which the exponent of the MHS equation becomes

higher than 0.5). Having now investigated a great

number of polymer±solvent systems, we propose the

following relation between Nc and a

Nc � 0:3a28 �5�

which is slightly different from the relation proposed in

our previous work [16]. In the following we use Eq. (5)

in order to obtain Nc which is necessary for the deter-

mination of statistical segment length, A, as we have

already mentioned. For some polymer±solvent systems

the obtained value of Nc from Eq. (5), especially when

we are not in the high molecular mass region, differs

slightly from the value of Nc obtained directly from Eq.

(2). Nevertheless, this difference has an insigni®cant

in¯uence on the value of statistical segment length, A,

obtained from Eq. (4).

3. Results and discussion

In Fig. 1 we present the variation of �h�=M1=2 as a function

of M3n21:5 for three polymer±solvent systems. The visco-

metric results are taken from the literature (POE±benzene

[17], PS±benzene [18] and PMMA±CHCl3 [19]). A good

linearity is observed for the three systems, with this repre-

sentation, indicating the validity of Eq. (4). From the slopes

of the straight lines obtained according to the MHS repre-

sentation for the same systems we have taken the value of a

or the value of n and knowing: C (from the value of n ), ML

(calculated divided the molecular weight of the repeating

unit of the polymer by the repeating unit projection length

[20] and Nc (calculated from Eq. (5)), and taking F � 2:6 £
10 23

; we calculate from the slopes of straight lines of Fig. 1,

according to Eq. (4), the value of the statistical segment

length, A, for these three polymers (Table 1). In order to

draw the curves of Fig. 1 the [h ] values are expressed in
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Table 1

Exponent of the MHS equation a, excluded volume index n , parameter of Han's equation C, slopes of the straight lines obtained according to Eq. (4), mass per

unit length ML, number of statistical segments of which one blob consists Nc, Kuhn statistical segment calculated from Eq. (4) A, unperturbed dimensions

parameter Ku and statistical segment length calculated from Ku; A 0, for nine polymer±solvent systems

Systems a n C ML £ 1028 (Da/cm) Slope £ 103 Nc A (AÊ ) Ku £ 102 (ml/g) A 0(AÊ ) Refs.

PS±benzenea 0.75 0.583 0.69 42 8.18 3.0 19.5 8.2 19.5 [18]

PS±benzeneb 0.725 0.575 0.71 42 10.5 3.9 20.8 8.2 19.5 Our result, [23]

PS±toluene 0.748 0.583 0.69 42 8.53 3.05 19.8 8.2 19.5 [21,22]

PS±cycloh.(508) 0.584 0.528 0.89 42 36.0 22.0 21.0 8.2 19.5 [21]

PS±cycloh.(558) 0.625 0.542 0.83 42 22.0 12.8 20.0 8.2 19.5 Our results

PMMA±CHCl3 0.81 0.603 0.63 40 3.85 1.6 13.3 5 13.3 [19]

POE±benzene 0.686 0.562 0.76 15.5 39.5 6.1 12.7 16.8 12.0 [17]

PE±decalin 0.7 0.567 0.74 11.2 59.0 5.2 12.1 29.5 12.0 [24]

PpmS±toluene 0.74 0.58 0.7 47.6 8.66 3.3 23.0 7.0 19.8 [6]

a High molecular mass region.
b Low and middle molecular mass region.

Fig. 2. SFB representation (Eq. (6)) for the systems: (A) POE±benzene; (B) PS±benzene; (C) PMMA±CHCl3.



ml/g, the ML is introduced in Da/cm and as we have

mentioned the value of F is introduced in cgs units. Finally

the value of A is obtained in cm and it is given, in the

following, in AÊ in Table 1.

With the same viscometric results with which we have

taken the straight lines of Fig. 1 we present now, in Fig. 2,

the variation of �h�=M 1=2 as a function of M1/2 according to

the follow equation (SFB equation [1,2])

�h�=M1=2 � Ku 1 0:51 BFM 1=2 �6�

The extrapolation of the linear part of the curves, obtained

with viscometric results of Fig. 1, to M � 0 must give the

unperturbed dimensions parameter, Ku; of these three poly-

mers. The obtained Ku values are completely erroneous (Ku

for PS equal to 34 £ 1022 ml=g; Ku for PMMA equal to

17:5 £ 1022 ml=g; and Ku for POE equal to

38 £ 1022 ml=g). The best values for Ku parameter of

these polymers are: Ku � 8:2 £ 1022 ml=g for PS, 5 £
1022 ml=g for PMMA and 16:8 £ 1022 ml=g for POE. This

result clearly indicates that in the relatively high molecular

mass and high molecular mass region we cannot use the

SFB representation in order to obtain the unperturbed

dimensions of polymers. On the contrary, the proposed

here new representation gives correct values for the statis-

tical segment length. These values of A are about the same

with the values obtained from the best values of Ku of these

three polymers (Table 1).

The application of Eq. (4) for the systems PS±toluene

(curve B), PS±cyclohexane (508C) (curve C) and PS±cyclo-

hexane (558C) (curve D) is given in Fig. 3. The viscometric

results for the PS±toluene system are taken from two

different articles [21,22] in which the exponent of the

MHS equation is the same. As we can see in Fig. 3 (curve

B), the points coming from the two different works lie on the

same straight line from the slope of which we obtain a good

value for the statistical segment length of PS (Table 1). The

application of Eq. (4) for the PS in cyclohexane at 508C [21]

and 558C also gives a good value for the Kuhn statistical

segment length (Table 1).

In Fig. 3 we also present the application of Eq. (4) for the

system PS±benzene (curve A). The viscometric results are

obtained by us and by Einaga et al. [23] in the region from

the very low to the middle molecular mass. The linearity

between �h�=M1=2 and M3n21:5 starts from a molecular mass

equal to 24,000 (arrow a in Fig. 3) and in this molecular

mass we also have the appearance of power law for the PS±

benzene system. This molecular mass is predicted from a

previously proposed relation [16]. In the region in which we

do not have a power law between [h ] and M, Eq. (4) is not

yet valid (Fig. 3, curve A). We must indicate that in the low

and in the middle molecular mass region the PS in benzene

presents a lower exponent in the MHS equation �a � 0:725�
comparing to the exponent obtained in the very high mole-

cular mass region �a � 0:75� but the obtained statistical

segment length for this polymer in the two molecular

mass regions are comparable (Table 1). This result

clearly indicates that even we are far from the non-

free draining limit (low and middle molecular mass

region), Eq. (4) and consequently Eq. (1) present a

self-consistency. In curve A of Fig. 3 we also indicate,

by the arrow b, the molecular mass of PS at which we

have the onset of excluded volume behavior. This
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Fig. 3. Variation of �h�=M1=2 versus M3n21:5 (Eq. (4)) for the systems: (A) PS±benzene (W: our results, £ : Ref. [23]); (B) PS±toluene (W: Ref. [22], X: Ref.

[21]); (C) PS±cyclohexane (508C); (D) PS±cyclohexane (558C).



molecular mass corresponds to a number of statistical

segments, Nc, given by Eq. (5) �Nc � 3:9�:
In Fig. 4 we present the application of Eq. (4) for the

systems polyethylene±decaline [24] (curve A) and

poly(p±methyl styrene)±toluene [6] (curve B). The

obtained statistical segment lengths for these two polymers

lie very close to the values obtained from the Ku values

proposed in the literature, as we can see in Table 1.

4. Conclusions

The method proposed here in order to obtain the Kuhn

statistical segment length of ¯exible polymers must be

added to the other existing methods giving the unperturbed

dimensions of polymers from viscometric results obtained

in good solvents. Comparing this method with the other

methods we realize that this one presents the following

advantages: (a) we can obtain the unperturbed dimensions

of polymers even from the viscometric results measured in

the very high molecular mass region, which present a

problem for the SFB method; (b) for the graphical represen-

tation we need, except from the viscometric results, only the

value of the exponent of the MHS equation, which is in

general obtained with good precision; and (c) Eq. (4)

describes a straight line passing through the origin, thus

allowing the determination of parameters values, more

precisely the slope of the straight line, with a smaller

number of experimental points.

The applicability of Eq. (4), which is derived from Eq.

(1), in the entire domain of molecular mass, except below

the appearance of the power law, and when the polymers are

dissolved in solvents of different quality, clearly indicates

that Han's equation (Eq. (1)) is not only valid in the non-free

draining limit, a � 0:8: Finally, in order to obtain Eq. (4)

from Eq. (1), which is derived from the blob theory, we have

used Eq. (3), which is taken from the two-parameters theory.

The good results obtained using Eq. (4) indicate that these

two theories, as we have already shown [8], do not con¯ict.
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Fig. 4. Variation of �h�=M1=2 versus M3n21:5 (Eq. (4)) for the systems: (A) PE±decalin; (B) PpmS±toluene.


